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ABSTRACT
Large-scale Mixed-Integer Linear Programming (MILP) problems
have been efficiently addressed usingMachine Learning (ML)-based
frameworks, especially ML-based evolutionary optimization frame-
works to obtain high-quality solutions. When addressing real-world
MILP problems, ML-based evolutionary optimization frameworks
often face challenges in acquiring sufficient instances that belong
to the same category. This underscores the need for generators that
can autonomously produce MILP problems from existing instances.
This paper introduces MILPGen, a novel generative framework for
autonomous MILP instance generation. Our key contribution lies
in the two-stage problem generation in MILPGen: 1) Node Splitting
and Merging, which splits the bipartite graph and tries to recon-
struct it; 2) Scalable Problem Construction, which concatenates
tree structures to get larger problems. We demonstrate that the
instances generated by MILPGen are highly similar to the original
problem instances and can effectively enhance the solution effect
of the ML-based evolutionary optimization frameworks. Further
experiments show that the scaled-up generated instances still re-
tain the problem’s structural properties, validating the proposed
framework’s effectiveness.

CCS CONCEPTS
•Mathematics of computing→Mixed discrete-continuous
optimization; • Computing methodologies → Unsupervised
learning.
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1 INTRODUCTION
Mixed-integer linear programming (MILP) is an extension of linear
programming that addresses problems where at least one variable
must take a discrete integer value instead of a continuous one
[9]. For large-scale MILP problems, leveraging Machine Learning
(ML)-based frameworks [2, 6], especially ML-based evolutionary
optimization frameworks [10], to find high-quality solutions has
become increasingly popular due to its capacity to strike a balance
between solution time and solution quality compared with tradi-
tional solution methods. These frameworks are usually trained on
the same type of problems and can outperform traditional solvers
on these types of problems. A significant challenge faced by these
ML-based frameworks is the heavy reliance on a large number of
problem instances that belong to the same category for training.
Nevertheless, it’s worth noting that numerous datasets [5] suffer
from a shortage of such isomorphic instances. This underscores the
requirement for a generator capable of autonomously producing
MILP instances that belong to the same category from existing
instances.

Current generators used to generate problem instances from
existing instances can be roughly divided into two categories, math-
ematically constructed andML-based approaches. Traditional meth-
ods heavily relies on manual design and often fails to accommodate
a diverse range of problems. In contrast, ML-based approaches are
limited to coefficient-free SAT problems and struggle to generate
intricate MILP instances with specific coefficients and constraints.

To address the limitations of current generative methods and
autonomously produce high-quality MILP instances, this paper in-
troduces MILPGen (Mixed Integer Linear Programming Instance
Generator), a deep generative framework designed for large-scale
MILP instances. Inspired by extant generation strategies [7, 11], the
key points of MILPGen lies in two components: Node Splitting and
Merging, and Scalable Problem Construction. MILPGen first adopts a
bipartite graph representation combined with a random-feat strat-
egy [2] to achieve an efficient and lossless feature embedding. Sub-
sequently, MILPGen integrates a discriminator model to split and
merge nodes. In particular, it initially decomposes the original bi-
partite graph into tree-like structures, simultaneously collecting
training data throughout the process. Subsequently, MILPGen uti-
lizes the discriminator model to predict the graph structure of MILP
instances. Furthermore, MILPGen scales problems by concatenating
various tree structures of the same category to construct scalable
problems.

Experimental results on three standard MILP demonstrate that
MILPGen can proficiently generate MILP problems that resemble
input training problems. By producing high-fidelity data imitations,
it addresses the challenge of ML-based evolutionary optimization
framework [10] depending on a multitude of problem instances
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Figure 1: An overview of MILPGen. The orange line signifies components that are
active only during training, the blue line represents components that are active
only during testing.
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Figure 2: Bipartite graph repre-
sentation of a MILP.

that belong to the same category. This paper’s contributions can
be summarized as follows:

(1) To the best of our knowledge, this is the first paper to propose
a deep generative model designed to generate scalable MILP
instances, laying the foundation for introducing large model
pre-training to combinatorial optimization problems.

(2) We automate node splitting operations to attain a simplified
tree-based representation of the original problem. Moreover,
we leverage a discriminator model to create scalable MILP
problems.

(3) We show that the instances generated by MILPGen can en-
hance the solution effect of the ML-based evolutionary op-
timization framework. The scaled-up generated instances
still retain the problem’s structural properties with improved
solving difficulty.

2 METHODOLOGY
This section introduces the proposed MILPGen (Mixed Integer
Linear Programming Instance Generator). Our generator consists of
two key stages: Node Splitting and Merging (Sec. 2.1) and Scalable
Problem Construction (Sec. 2.2).

2.1 Node Splitting and Merging
In this stage, MILPGen focuses on learning the distribution over the
BGR of MILP problems. Given the complex structure of bipartite
graphs of MILPs, generating the entire graph in one step is unfea-
sible. Inspired by G2SAT [11], we adopt a step-by-step learning
and generation approach. Specifically, we split the original bipar-
tite graph into tree structures and employ the discriminator model
to predict which pair of nodes should be merged to reconstruct
the graph structure. Let 𝑛 be the number of nodes in the bipartite
graph, and𝑚 the number of edges. If MILPGen performs 𝑥 node
splitting and merging operations to generate a new problem, the
reconstruction percentage is defined as 𝑥

𝑚−𝑛 .

2.1.1 Node Splitting. MILPGen first transforms the original bipar-
tite graph into a tree-like structure, and then identifies a node 𝑥 in
graph 𝐺 with the highest degree and splits it into two new nodes,
𝑝 and 𝑞. In particular, if node 𝑥 has a degree 𝑑 in𝐺 , the new node 𝑝
will inherit 𝑑 − 1 edges from 𝑥 (selected randomly) and node 𝑞 will
inherit a single edge from 𝑥 , which generates a new graph 𝐺 ′. For
each graph 𝐺𝑖 , let 𝑥𝑖 be the node to be split, Node Splitting gener-
ates a new graph 𝐺𝑖−1 and two new nodes 𝑝𝑖 and 𝑞𝑖 .Then another
node 𝑟𝑖 is selected from the same partition of 𝐺 where 𝑝𝑖 and 𝑞𝑖
belong to but is distinct from both. This process generates training
data in the form of positive examples (𝐺𝑖−1, 𝑝𝑖 , 𝑞𝑖 ) and negative
examples (𝐺𝑖−1, 𝑝𝑖 , 𝑟𝑖 ). The tuples (𝐺𝑖−1, 𝑝𝑖 , 𝑞𝑖 , 𝑟𝑖 ) are stored in a
training dataset 𝐷 for subsequent usage.

MILPGen needs to maintain the node feature information. To
achieve this goal, the one-hot vectors 𝐴𝑖 , 𝐵 𝑗 and the coefficients
𝑢𝑖 , 𝑣 𝑗 , which represent the variables in the optimization objectives
and constraint right-hand sides (RHS), remain the same as before
splitting. In addition, the random feature 𝜉 is regenerated, and the
degree 𝑑 is updated as 𝑑𝑝𝑖 = 𝑑𝑥𝑖 − 1 and 𝑑𝑞𝑖 = 1 since 𝑝𝑖 inherits
𝑑𝑥𝑖 − 1 edges from the split node 𝑥𝑖 , and 𝑞𝑖 only gets one newly
created edge.

2.1.2 Discriminator Model Design. The discriminator employs a
half-convolution GCN optimized for bipartite graphs, augmented
with a Multilayer Perceptron. This model begins with a three-layer
semi-convolutional GCN that operates with identical parameters
across layers. This GCN architecture is responsible for obtaining
the node embeddings for each node in the bipartite graph. Then the
model assesses the pair of nodes under consideration for merging.
The embeddings of these two nodes are concatenated and fed into
an MLP, which then outputs a value between 0 and 1—indicative of
the confidence level for merging the nodes.

2.1.3 Node Merging. Node Merging in MILPGen transforms tree
structures back into complex bipartite graphs. Specifically, consider
an input graph𝐻0, through 𝑛 iterations of node merging operations,
the algorithm yields 𝐻𝑛 . For each graph 𝐻𝑖 , MILPGen randomly
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samples 𝐾 pairs of nodes {(𝑢𝑘 , 𝑣𝑘 )}𝐾𝑘=1 and employs the above
discriminator model to parallelly compute the likelihood of merging
each pair in the context of 𝐻𝑖 . Then, it selects the node pair (𝑢𝑜 , 𝑣𝑜 )
with the highest merging probability to form the subsequent graph
𝐻𝑖+1.

To maintain the bipartite nature of the resulting graph, it is
essential that the nodes in each potential pair belong to the same
half of the original bipartite graph. The selection probability for
merging nodes from either the variable or constraint partition is
determined based on their respective splitting frequencies 𝑥 and
𝑦 during the Node Splitting phase. Specifically, the probability of
merging a decision-variable node is 𝑥

𝑥+𝑦 , and that for a constraint-
equation node is 𝑦

𝑥+𝑦 .
Converse to the Node Splitting stage, the feature set 𝐴𝑖 or 𝐵 𝑗

of the new merged node is randomly selected from one of the two
nodes being merged. The degree of the new node is the sum of
the degrees of the two original nodes. The coefficients 𝑢𝑖 and 𝑣 𝑗
relating to optimization targets and constraint Right-Hand Sides
(RHS) are averaged, and a new random feature 𝜉 is generated.

2.2 Scalable Problem Construction
2.2.1 Node Embeddings Computation. During the problem scal-
ing phase, MILPGen initially utilizes the GCN component of the
discriminator model for inference. This enables the computation
of node embeddings for each node in the two trees marked for
merging. However, due to computational constraints, it’s imprac-
tical to compare the node embeddings of every node between the
two trees. To address this, a hyperparameter 𝐸 is introduced to
select 𝐸 nodes from each tree for comparison. The classical cosine
similarity metric is employed to compare the embeddings. With the
computational complexity being 𝑂 (𝐸2), this algorithm conducts
pairwise comparisons among the embeddings of all selected nodes.
Subsequently, it identifies the pair with the highest similarity score
as the optimal candidates for merging.

2.2.2 Tree Merging. The key idea of tree merging is to amalga-
mate multiple trees into a single and larger tree, each derived from
the same type of MILP problem instances and subjected to node-
splitting processes. This consolidated tree is then subjected to node
merging to generate a more complex problem instance than those
used during training. Given a set of trees denoted as T , the process
begins by randomly sampling a base tree 𝑇0 from T . Subsequent
operations involve iteratively merging 𝑇𝑖−1 with a randomly se-
lected tree 𝑡 from T , resulting in a new tree𝑇𝑖 . Finally,𝑇𝑚 becomes
the enlarged tree after several iterations.

Merging two trees involves calculating node embeddings to iden-
tify the pair of nodes with the highest similarity for merging, similar
to the node merging process. However, in addition to maintaining
the node feature information of the newly merged nodes, similar
to node merging, the process also keeps track of the number of
node-splitting occurrences associated with the constraint equation
nodes and decision variable nodes within the tree.

3 EXPERIMENTS
We evaluate the performance of MILPGen on three combinatorial
optimization benchmark problems, including Maximum Indepen-
dent Set (MIS) [8], Combinatorial Auction (CA) [3], and Minimum
Vertex Cover (MVC) [4]. First, we study the performance of the
generation of MILPGen with the same scale problem generation, as-
sessing its role as a data augmentation tool (Sec. 3.1). Furthermore,
we study the scalability of MILPGen to evaluate its remarkable imi-
tation and generation capabilities (Sec. 3.2). The code of MILPGen
is available at https://github.com/thuiar/MILPGen.

In the following experiments, we compare the generation re-
sults of MILPGen with two baselines. The first baseline, referred
to as ‘Bowly’[1], is a heuristic MILP instance generator. In our
experiments, we set its all controllable parameter to match the cor-
responding features of the MILP instances in our training dataset.
The second baseline, named ‘Random’, is derived by randomiz-
ing the output of the discriminator in the Node Merging step of
MILPGen, and the reconstruction percentage is set to 100%.

3.1 Overall Performance of Generation
To study the MILPGen performance of generation, we examine
whether the generated MILP instances preserve the properties of
the input training MILP instances through an analysis of solver
performance (Sec. 3.1.1). Subsequently, we integrate MILPGen into
the ML-based evolutionary optimization framework [10] to study
its potential as a data augmentation technique (Section 3.1.2). This
evaluation examines the quality of the generated MILP instances
in predicting feasible solutions and their capacity to improve opti-
mization results.

3.1.1 MILP Solver Performance. We compared the solver perfor-
mance of MILP problems generated using different methods with
that of the original training data instances. Solver performance
results are presented in Table 1. Our experimental findings indicate
that the problems generated by MILPGen exhibit a level of solving
complexity similar to that of the original problems, contrasting
with the relatively trivial problems generated by the Random and
Bowly methods.

3.1.2 Data Augmentation for ML-based Evolutionary Optimization
framework. To validateMILPGen’s effectiveness in tackling the chal-
lenge posed by ML-based optimization frameworks that depend on
a substantial number of instances of problems for training data, we
conducted experiments on the state-of-the-art GNN&GBDT-based
evolutionary optimization framework [10]. We make comparisons
between only using the training dataset and using both the training
dataset and the 20 newly generated MILP problems (use model
trained by the input dataset) as training data for the ML-based
evolutionary optimization framework. The evaluation focuses on
the framework’s solving performance for MILP problems and is
shown in Table 2. The results indicate that the MILP problems
newly generated by MILPGen enhance the predictive ability and
solution effectiveness of the ML-based optimization framework.

3.2 Scalability of MILPGen
To further study MILPGen’s capability to generate scalable MILP
instances, we evaluate the large-scale problems derived through
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Table 1: Comparison of the optimality gap. The interval represents the result of 20 generated instances by specifying different
random seeds. The percentage after MILPGen denoted reconstruction percentage. For SCIPopt solver, the time limit is set to
1200s; for Gurobi solver, the time limit is set to 600s. “Origin” represents the instance used as training data.

Optimality Gap Origin MILPGen-25% MILPGen-50% MILPGen-100% Random Bowly
MIS-SCIP 9.64% 7.06% ∼ 9.93% 7.78% ∼ 11.31% 4.64% ∼ 7.33% solved in 1.29 ∼ 150.05𝑠 solved in 0.14 ∼ 0.41𝑠
MIS-Gurobi 6.93% 5.03% ∼ 6.25% 6.14% ∼ 7.00% 2.64% ∼ 3.87% solved in 0.05 ∼ 1.03𝑠 solved in 0.02 ∼ 0.90𝑠
CA-SCIP 9.52% 9.30% ∼ 13.12% 9.76% ∼ 12.69% 6.82% ∼ 9.53% solved in 3.38 ∼ 126.51𝑠 solved in 0.09 ∼ 10.49𝑠
CA-Gurobi 7.17% 7.73% ∼ 9.84% 8.22% ∼ 10.45% 5.53% ∼ 6.90% solved in 0.56 ∼ 9.58𝑠 solved in 0.02 ∼ 5.01𝑠
MVC-SCIP 10.04% 7.06% ∼ 9.56% 5.26% ∼ 7.81% solved in 258.78𝑠 ∼ 0.49% solved in 0.42 ∼ 0.95𝑠 solved in 0.13 ∼ 2.44𝑠
MVC-Gurobi 6.01% 4.32% ∼ 5.10% 3.43% ∼ 4.15% solved in 5.14𝑠 ∼ 0.05% solved in 0.55 ∼ 1.08𝑠 solved in 0.01 ∼ 0.58𝑠

Table 2: Comparison of the final optimized solution within a fixed time trained by generated MILP instances and the training
dataset. The percentage after MILPGen denoted reconstruction percentage. The scale-limited versions of SCIP which limit the
variable proportion 𝛼 is set to 30%, the time limit of the solver framework is 50s.

MIS CA MVC
Original Augmented Original Augmented Original Augmented

MILPGen-25%

2092.99

2122.68 ↑

1452.95

1460.78 ↑

2918.80

2870.89 ↑
MILPGen-50% 2141.37 ↑ 1503.47 ↑ 2837.94 ↑
MILPGen-100% 2080.6 1444.40 2911.74 ↑

Bowly 1797.2 1069.7 3008.7

Table 3: Comparison of the optimality gap between the scal-
able generated MILP problems and the training dataset. For
SCIPopt solver, the time limit is set to 1200s; for Gurobi solver,
the time limit is set to 600s.

Var Num Constr Num Gap-SCIP Gap-Gurobi
MIS-input 10000 30000 9.64% 6.93%
MIS-1x 10001 30000 5.78% 2.65%
MIS-2x 19999 60000 7.26% 4.21%
MIS-4x 39998 120000 25.13% 11.21%
MIS-8x 79994 240000 25.69% 11.42%
CA-input 10000 20000 9.52% 7.17%
CA-1x 10000 20000 7.32% 6.34%
CA-2x 19999 40000 226.65% 8.00%
CA-4x 39998 80000 224.81% 185.24%
CA-8x 79993 160000 229.21% 188.08%

MVC-input 10000 30000 10.04% 6.01%
MVC-1x 10002 30000 1.91% solved in 82.83s
MVC-2x 20000 60000 1.16% 0.50%
MVC-4x 40000 120000 13.55% 0.77%
MVC-8x 79994 240000 14.08% 4.81%

extrapolation from the small-scale training dataset. All the results
are shown in Table 3. The solving performance measured by SCIP
and Gurobi, suggests that the generated scaling instances closely
match those of the large-scale training dataset. This confirms the
remarkable imitation and generation capabilities of MILPGen.

4 CONCLUSION
This study presents MILPGen, a pioneering deep generative model
tailored for MILP problems. Leveraging advanced techniques like
a random-feat policy for bipartite graph representation, and node

operations in an expanded feature space, MILPGen effectively ad-
dresses the shortcomings of prior models, such as limited represen-
tation in large-scale MILP problem generation, and oversimplified
problem structures. Currently focused on single-objective, linear,
and static problems, future work will extend to more complex sce-
narios including multi-objective, nonlinear, and dynamic problems.
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